

Interpreting Holstein Association USA's Individual Genomic Prediction Report

When you genomic test an animal through Holstein Association USA, you will receive a report with a variety of traits and their genomic PTA values, as well as the animal's original parent average PTAs. The genomic PTAs will appear on the animal's pedigree and other performance products following the next national genetic evaluation run (which takes place in April, August and December).

You will receive genomic PTAs and STAs for the following traits:

- **Selection Indexes:** Genomic Total Performance Index® (GTPI) is a registered service mark of Holstein Association USA. Net Merit (NM\$) is calculated by USDA/CDCB. These indexes combine several economically important traits into a single value, helping dairy producers breed more profitable cattle. More information about the TPI formula can be found at www.holsteinusa.com on the Genetic Evaluations page.
- Yield Traits: Milk, Fat (lbs), Fat %, Protein (lbs), Protein %, Feed Efficiency Index (FE)
- **Health Traits:** Daughter Pregnancy Rate (DPR), Productive Life (PL), Livability (LIV), Somatic Cell Score (SCS), Heifer Conception Rate (HCR), Cow Conception Rate (CCR), Fertility Index (FI)
- **20 Type Traits and Type Composite Indexes:** See sample report for the complete list of type traits and composite indexes reported.
- Calving Traits: Daughter Calving Ease, Sire Calving Ease, Daughter Stillbirth, Sire Stillbirth, and Gestation Length

You may receive your genomic prediction reports via email or postal mail, and also view them within the Enlight® online genetic management tool. Learn more about Enlight at www.enlightdairy.com.

Explanation of the Genomic Prediction Report

The following information will help you interpret the report you receive after genomic testing an animal through Holstein Association USA. See the example report on the last two pages to follow along with the numbers below.

- Animal Identification Information

 On the top of the report you will find the name, registration number, herd management ID number, date of birth, sire and dam of the animal the report is issued for.
- Genomic Future Inbreeding Coefficient

 The GFI is comparable to the Expected Future Inbreeding (EFI) numbers that are assigned to non-genomic tested animals. This value is an estimate of the level of inbreeding the progeny of this animal will contribute in the population if mated at random, based on homozygosity and percentage of genes an animal has in common with the Holstein population.
- Genomic Predicted Transmitting Abilities (PTA) and Official Parent Averages (PA) or PTAs

These columns provide a comparison between an animal's new genomic PTAs and their former parental averages or PTAs. Comparing between the two columns allows you to see how much an animal changed based on the actual genes they possessed. Genomic PTAs will not appear on Official Holstein Pedigrees™ until after they have gone through an official genetic evaluation, which happens in April, August and December.

- 4 Genomic and Traditional Reliabilities

 These columns show the increase in reliability between an animal's traditional evaluation and their new genomic evaluation. The increased reliability indicates that more information has been added to the evaluation.
- Other Information
 This line describes which version of the SNP chip was used for the test, the month the results were delivered, as well as the date the report you are viewing was generated.

Explanation of the Genetic Condition, Haplotype & Added Content Report

Most genomic tests come with a variety of added content that is provided to dairy producers with their genomic PTAs. Some conditions are included free with the genomic test and some tests are available for an additional cost. Additionally, USDA/CDCB provides haplotype results for the prominent genetic conditions found in Holstein cattle, as well as Haplotypes Impacting Fertility.

INTERPRETING OFFICIAL GENETIC CODES

Animals who have had a specific gene test performed for the condition in question will have a two- or three-character label, indicating whether they have been tested free or found to be a carrier for the condition. Following are examples of official genetic codes you may see on your Genetic Condition Report (if the specific gene test was requested).

- CVM TV (tested free) or CV (tested carrier)
- Brachyspina TY (tested free) or BY (tested carrier)
- BLAD TL (tested free) or BL (tested carrier)
- DUMPS TD (tested free) or DP (tested carrier)
- Mulefoot TM (tested free) or MF (tested carrier)
- Cholesterol Deficiency TC (tested free) or CD (tested carrier)
- Muscle Weakness TE (tested Free), MW (heterozygous carrier) or MW2 (homozygous carrier)
- Horned/Polled TP (tested free), PC (tested heterozygous, one copy of the polled allele), or PP (tested homozygous, two copies of the allele); additionally, animals may have the official genetic code of PO, meaning the breeder reported the animal as being Observed Polled, but the animal has not had the official test to confirm.
- Dominant Red DR1 (tested heterozygous, one copy of Dominant Red allele), DR2 (tested homozygous, two copies of the allele). Animals who are not carriers for Dominant Red (DR0) will not be labelled.
- Recessive Red TR (tested free) or RC (tested carrier)

UNDERSTANDING HAPLOTYPE CODES

A haplotype is a combination of alleles (DNA sequences) at different locations on a chromosome that are transmitted together as a group (linked). Genomics is giving us more insight into the genetics of our cattle than ever before, leading more informed, better decision-making on the farm.

Dairy researchers have discovered six **Haplotypes Impacting Fertility** which are officially recognized by Holstein Association USA and the greater dairy industry; referred to as HH1, HH2, HH3, HH4, HH5 and HH6, these haplotypes are believed to cause embryonic or fetal death when present in homozygous form, i.e., the offspring inherits the haplotype from both the sire and dam. In a herd, this would appear as if a cow did not conceive, resulting in greater days open and lower conception rates. Researchers have found that these haplotypes never occur in homozygous form amongst any living animal (that had their genome tested). That scenario is highly unlikely based on population probabilities, unless affected animals did not survive to birth.

In December 2023, a new haplotype was made available for **Early Onset Muscle Weakness Syndrome (HMW)**. MW is characterized by a calf's inability to stand or if assisted, remain standing. The haplotype codes of 0 to 4 are being used to denote an animal's status on Holstein Association USA's reports, as noted below.

CODES FOR HAPLOTYPE ASSOCIATED WITH EARLY ONSET MUSCLE WEAKNESS SYNDROME (HMW)

Haplotype Code	Description
0	Non-carrier: free of HMW
1	HMW Carrier: haplotype confirmed with pedigree information
2	Homozygous for HMW: confirmed on both sides of pedigree
3	Suspect carrier: haplotype origin could not be confirmed from pedigree
4	Suspect homozygous: probable carrier and may be homozygous; origin of haplotypes could not be confirmed from pedigree

In July 2015, dairy researchers identified a new deleterious haplotype, called **Holstein Haplotype Associated with Cholesterol Deficiency (HCD)**. This is a more serious defect than the Haplotypes Impacting Fertility, as animals who are homozygous for the unfavorable haplotype only survive a few months from birth. There are two versions of the haplotype, one which is lethal in homozygous form. The two haplotype versions look identical when examining only the surrounding marker genotypes. Pedigree information, combined with having knowledge of the haplotype status of earlier ancestors, allows for an accurate determination. The haplotype carrying the defect is difficult to track because both the normal version and the defected version occur frequently Codes of 0 to 4 are being used to denote an animal's status on Holstein Association USA's reports, as noted below.

CODES FOR HAPLOTYPE ASSOCIATED WITH CHOLESTEROL DEFICIENCY (HCD)

Haplotype Code	Description
0	Non-carrier: free of HCD
1	HCD Carrier: haplotype confirmed with pedigree information
2	Homozygous for HCD: confirmed on both sides of pedigree
3	Suspect carrier: haplotype origin could not be confirmed from pedigree
4	Suspect homozygous: probable carrier and may be homozygous; origin of haplotypes could not be confirmed from pedigree

Haplotype results are also provided by USDA-CDCB at no charge for all traits for which an official genetic condition test is available, but not requested by the producer. Haplotype results can be useful for identifying animals that are good candidates for further genetic testing, and can also be used in conjunction with known genetic codes to trace different genetic conditions through the pedigree of an animal.

Haplotype results are not considered official; performing the actual gene test for a condition (when available) is required for labelling on pedigrees and other official Holstein performance products. It is also important to note that haplotype results are not a 100% accurate indicator of whether or not an animal is a carrier or free of a condition. In the case where an animal has an actual gene test result and a haplotype result, the actual gene test result should always be considered official.

Most haplotypes have simple result reporting: "T" indicates the animal is tested free of that haplotype and "C" indicates the animal is a carrier of the haplotype. For example, the haplotype associated with CVM is abbreviated as HHC; HHCT indicates an animal has tested free of that haplotype, and HHCC would indicate that an animal was found to carry that particular haplotype.

With three potential genotypes, the haplotype associated with Polled has an addition to the codes above, and can be interpreted as follows:

CODES FOR HAPLOTYPE ASSOCIATED WITH POLLED (HHP) CODES

Haplotype HHP Code	Expected Genotype	Expected Phenotype	Expected Genetic Code (if official polled gene test is performed)
Т	p p – does not carry polled allele	Horned	TP
С	P p – carries one copy of the polled allele	Polled	PC
Н	PP – carries two copies of the polled allele	Polled	PP

Dominant Red and Recessive Red also have more possible genotypes, and they are coded as follows:

CODES FOR HAPLOTYPE ASSOCIATED WITH RECESSIVE RED (HRR)

Haplotype HRR Code	Expected Genotype	Expected Phenotype	Expected Genetic Code (if official Recessive Red gene test is performed)
0	ED ED	Black	TR
1	ED EBR	Black	B/R
2	ED E+	Black	RC
3	ED e	Black	RC
4	EBR EBR	Black/Red	B/R
5	EBR E+	Black/Red	B/R RC
6	EBR e	Black/Red	B/R RC
7	E+ E+	Red	RED
8	E+ e	Red	RED
9	e e	Red	RED

CODES FOR HAPLOTYPE ASSOCIATED WITH DOMINANT RED (HDR)

Haplotype HDR Code	Expected Genotype	Expected Phenotype	Expected Genetic Code (if official Dominant Red gene test is performed)
0	DR0 – animal carries 0 copies of the Dominant Red allele	Black	None (DR0 is not labelled on pedigrees or other performance products)
1	DR1 – animal carries 1 copy of the Dominant Red allele	Red	DR1
2	DR2 – animal carries 2 copies of Dominant Red allele	Red	DR2

On the Genetic Condition report, available information, either specific gene test or haplotype result, is provided for the animal itself, as well as the sire and dam (when available).

With questions or for more information about your genomic predictions, call 800.952.5200.

Holstein Association USA

1 Holstein Place, PO Box 808 • Brattleboro, VT 05302-0808 800.952.5200 • www.holsteinusa.com

HOLSTEIN ASSOCIATION USA, INC.

1 Holstein Place, PO Box 808, Brattleboro, VT 05302-0808 www.holsteinusa.com 800.952.5200

TTM MILKY MAID-ET 840003263337019 F HMID: 2749

Thomas T. Mercuro, Rocky Ridge MD

DOB: 10/01/2023 GFI: 12.3 +2

Sire: PINE-TREE LIONEL MILKY-ET 840003150687388

Dam: TTM ACURA MELISA-ET 840003211378337

		<u> </u>		
GENOMIC PREDICTIONS	Genomic PTA	Aug 2023 PA/PTA	Genomic REL %	Aug 2023 REL %
SELECTION INDEX				
Total Performance Index (TPI)	3062	2976	79	42
Net Merit (\$)	1103	1034	74	
YIELD TRAITS				
Milk	1442	1679	80	42
Fat (Ibs)	118	104	80	42
Fat (%)	0. 21	0. 13	80	
Protein (Ibs)	78	69	81	43
Protein (%)	0.11	0.06	81	
Feed Efficiency	335	305	80	42
CALVING TRAITS				
Daughter Calving Ease	2.3	2.3	58	33
Sire Calving Ease	2.0		62	
Daughter Stillbirth	5.0	5. 1	55	31
Sire Stillbirth	5.8		60	
Gestation Length	-1.4		72	
TYPE TRAITS				
Final Score (PTAT)	1.43	1. 24	79	41
Feet/Legs Composite	0.73	0. 75		
Udder Composite	1.43	1.46		
Stature	0.72	-0. 29		
Strength	-0.13	-0. 50		
Body Depth	-0. 11	-0. 51		
Dairy Form	1.60	1. 01		
Rump Angle	-0. 32	-0. 71		
Rump Width	0.76	0. 32		
Rear Legs Side View	0.40	0. 26		
Rear Legs Rear View	0.77	0. 52		
Foot Angle	0.37	0.05		
Feet and Leg Score	0.88	0.71		
Fore Attachment	1. 49	1.55		
Rear Udder Height	2.30	1. 99		
Rear Udder Width	2. 23	1.87		
Udder Cleft	-0. 23	-0. 23		
Udder Depth	1.08	0. 85	80	42
Front Teat Placement	0. 22	0.39		
Rear Teat Placement	-0.09	0. 10		
Teat Length	-0.34	-0. 70		

HOLSTEIN ASSOCIATION USA, INC.

1 Holstein Place, PO Box 808, Brattleboro, VT 05302-0808 www.holsteinusa.com 800.952.5200

TTM MILKY MAID-ET 840003263337019 F HMID: 2749

Thomas T. Mercuro, Rocky Ridge MD

DOB: 10/01/2023 GFI: 12.3

Sire: PINE-TREE LIONEL MILKY-ET 840003150687388 840003211378337

Dam: TTM ACURA MELISA-ET

GENOMIC PREDICTIONS	Genomic PTA	Aug 2023 PA/PTA	Genomic REL %	Aug 2023 REL %
HEALTH TRAITS				
Daughter Pregnancy Rate (%)	-2.5	-2.0	74	39
Productive Life (months)	4.3	4. 2	75	39
Livability	1.7	1.5	72	37
Somatic Cell Score	3.05	2. 98	76	40
Heifer Conception Rate	2.2	2.3	72	38
Cow Conception Rate	-0.8	-0. 2	74	38
Fertility Index	-1.3	-0. 9	74	39
CDCB Hypocal cemi a	0.0		58	
CDCB Displaced Abomasum	0.9		63	
CDCB Ketosis	2.1		62	
CDCB Mastitis	0.6		71	
CDCB Metritis	1.7		65	
CDCB Retained Placenta	0.2		65	

GENETIC CONDITIONS	Mai d	SIRE	DAM			
GENETIC CONDITIONS	Waru	SIKE	DAW			
CVM	HHCT(Non-Carrier)	TV HHCT	HHCT			
Brachyspi na	HHOT(Non-Carrier)	TY HHOT	HHOT			
BLAD	TL HHBT(Non-Carrier)	TL HHBT	TL HHBT			
DUMPS	TD HHDT(Non-Carrier)	TD HHDT	TD HHDT			
Mulefoot	HHMT(Non-Carrier)	HHMT	HHMT			
Cholesterol Deficiency	TC HCDO(Non-Carrier)	TC HCDO	TC HCDO			
Muscle Weakness	HMWO(Non-Carrier)	HMWO	HMWO			
Horned/Polled	TP HHPT(Non-Carrier)	TP HHPT	TP HHPT			
Dominant Red	HDRT(Non-Carrier)	HDRT	HDRT			
Recessive Red	TR HRRO(Non-Carrier)	TR HRRO	TR HRRO			
BI ack/Red	HBRT(Non-Carrier)	HBRT	HBRT			
HAPLOTYPES IMPACTING FER	HAPLOTYPES IMPACTING FERTILITY					
Hapl otype 1	HH1T(Non-Carrier)	HH1T	HH1T			
Haplotype 2	HH2T(Non-Carrier)	HH2T	HH2T			
Haplotype 3	HH3T(Non-Carrier)	HH3T	HH3T			
Haplotype 4	HH4T(Non-Carrier)	HH4T	HH4T			
Haplotype 5	HH5T(Non-Carrier)	HH5T	HH5T			
Haplotype 6	HH6T(Non-Carrier)	HH6T	HH6T			
MILK PROTEINS	MILK PROTEINS					
Beta Casein A2	A2A2	A2A2	A1A2			
Beta Lactoglobulin	BB	AB	AB			
Kappa Casein	AB	AB	BE			
OTHER	OTHER					
Citrullinemia	T	T	T			

Date Issued: December 2023 Printed: 12-05-23